Part Number Hot Search : 
ADG836 DB101 390FK011 RJ9711 TDA738 PNN6028 24FR5S TC74LCX
Product Description
Full Text Search
 

To Download BSH203 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Philips Semiconductors
Product specification
P-channel enhancement mode MOS transistor
FEATURES
* Very low threshold voltage * Fast switching * Logic level compatible * Subminiature surface mount package
BSH203
SYMBOL
s
QUICK REFERENCE DATA VDS = -30 V ID = -0.47 A RDS(ON) 1.1 (VGS = -2.5 V) VGS(TO) 0.4 V
d
g
GENERAL DESCRIPTION
P-channel, enhancement mode, logic level, field-effect power transistor. This device has low threshold voltage and extremely fast switching making it ideal for battery powered applications and high speed digital interfacing. The BSH203 is supplied in the SOT23 subminiature surface mounting package.
PINNING
PIN 1 2 3 gate source drain DESCRIPTION
SOT23
3 Top view
1
2
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134) SYMBOL VDS VDGR VGS ID IDM Ptot Tstg, Tj PARAMETER Drain-source voltage Drain-gate voltage Gate-source voltage Drain current (DC) Drain current (pulse peak value) Total power dissipation Storage & operating temperature CONDITIONS RGS = 20 k Ta = 25 C Ta = 100 C Ta = 25 C Ta = 25 C Ta = 100 C MIN. - 55 MAX. -30 -30 8 -0.47 -0.3 -1.9 0.417 0.17 150 UNIT V V V A A A W W C
THERMAL RESISTANCES
SYMBOL Rth j-a PARAMETER Thermal resistance junction to ambient CONDITIONS FR4 board, minimum footprint TYP. 300 MAX. UNIT K/W
August 1998
1
Rev 1.000
Philips Semiconductors
Product specification
P-channel enhancement mode MOS transistor
ELECTRICAL CHARACTERISTICS
Tj= 25C unless otherwise specified SYMBOL PARAMETER V(BR)DSS VGS(TO) RDS(ON) Drain-source breakdown voltage Gate threshold voltage Drain-source on-state resistance CONDITIONS VGS = 0 V; ID = -10 A VDS = VGS; ID = -1 mA Tj = 150C VGS = -4.5 V; ID = -280 mA VGS = -2.5 V; ID = -280 mA VGS = -1.8 V; ID = -140 mA VGS = -2.5 V; ID = -280 mA; Tj = 150C Forward transconductance VDS = -24 V; ID = -280 mA Gate source leakage current VGS = 8 V; VDS = 0 V Zero gate voltage drain VDS = -24 V; VGS = 0 V; current Tj = 150C Total gate charge Gate-source charge Gate-drain (Miller) charge Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time Input capacitance Output capacitance Feedback capacitance ID = -0.5 A; VDD = -10 V; VGS = -4.5 V MIN. -30 -0.4 -0.1 0.3 -
BSH203
TYP. MAX. UNIT V V V S nA nA A nC nC nC ns ns ns ns pF pF pF
gfs IGSS IDSS Qg(tot) Qgs Qgd td on tr td off tf Ciss Coss Crss
-0.68 0.66 0.9 0.92 1.1 1.1 1.2 1.4 1.65 1.0 10 100 -50 -100 -1.3 -10 2.2 0.4 0.25 2 4.5 45 20 110 27 7 -
VDD = -10 V; ID = -0.5 A; VGS = -8 V; RG = 6 Resistive load VGS = 0 V; VDS = -24 V; f = 1 MHz
REVERSE DIODE LIMITING VALUES AND CHARACTERISTICS
Tj = 25C unless otherwise specified SYMBOL IDR IDRM VSD trr Qrr PARAMETER Continuous reverse drain current Pulsed reverse drain current Diode forward voltage Reverse recovery time Reverse recovery charge CONDITIONS Ta = 25 C IF = -0.38 A; VGS = 0 V IF = -0.5 A; -dIF/dt = 100 A/s; VGS = 0 V; VR = -24 V MIN. TYP. -0.87 27 28 MAX. -0.47 -1.9 -1.3 UNIT A A V ns nC
August 1998
2
Rev 1.000
Philips Semiconductors
Product specification
P-channel enhancement mode MOS transistor
BSH203
Normalised Power Dissipation, PD (%)
120 100 100 80 60 40 1 20 10 1000
Peak Pulsed Drain Current, IDM (A)
D = 0.5 0.2 0.1 0.05 0.02 single pulse P D tp D = tp/T
T 0 0 25 50 75 100 125 150 Ambient Temperature, Ta (C) 0.1 1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00 1E+01
Pulse width, tp (s)
Fig.1. Normalised power dissipation. PD% = 100PD/PD 25 C = f(Ta)
Fig.4. Transient thermal impedance. Zth j-a = f(t); parameter D = tp/T
Normalised Drain Current, ID (%)
120 100 80 60 40 20 0 0 25 50 75 100 125 150
Drain current, ID (A) -3 -2.5 -2 Tj = 25 C
BSH203
-4.5 V -2.5 V
-1.5 -1 -0.5 0 0
-2.2 V -2 V -1.8 V -1.6 V -1.4 V VGS = -1.2 V -0.5 -1 -1.5 Drain-Source Voltage, VDS (V) -2
Ambient Temperature, Ta (C)
Fig.2. Normalised continuous drain current. ID% = 100ID/ID 25 C = f(Ta); conditions: VGS -10 V
Fig.5. Typical output characteristics, Tj = 25 C. ID = f(VDS); parameter VGS
Drain-Source On Resistance, RDS(on) (Ohms) 10 Peak Pulsed Drain Current, IDM (A) BSH203 tp = 10us 1 RDS(on) = VDS/ ID 100 us 1 ms 10 ms 0.1 d.c. 0.01 100 ms 3 2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 -1.1 V -1.3 V -1.4 V -1.5 V -1.6 V -1.8 V -1.2 V
BSH203 Tj = 25 C
-2.5 V VGS = -4.5V
0.001 0.1 1 10 Drain-Source Voltage, VDS (V) 100
-0.2
-0.4 -0.6 -0.8 Drain Current, ID (A)
-1
-1.2
-1.4
Fig.3. Safe operating area. Ta = 25 C ID & IDM = f(VDS); IDM single pulse; parameter tp
Fig.6. Typical on-state resistance, Tj = 25 C. RDS(ON) = f(ID); parameter VGS
August 1998
3
Rev 1.000
Philips Semiconductors
Product specification
P-channel enhancement mode MOS transistor
BSH203
Drain Current, ID (A) -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0 VDS > ID X RDS(on) Tj = 25 C 150 C
BSH203 0.7 0.6 0.5 0.4
Threshold Voltage, VGS(to), (V)
typical
minimum 0.3 0.2 0.1 0 0 -0.5 -1 -1.5 -2 -2.5 Gate-Source Voltage, VGS (V) -3 -3.5 25 50 75 100 125 150 Junction Temperature, Tj (C)
Fig.7. Typical transfer characteristics. ID = f(VGS)
Fig.10. Gate threshold voltage. VGS(TO) = f(Tj); conditions: ID = 1 mA; VDS = VGS
Transconductance, gfs (S) 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 VDS > ID X RDS(on) Tj = 25 C
BSH203 1E-01 1E-02 1E-03 1E-04 1E-05 1E-06
Drain Current, ID (A)
BSH203 VDS = -5 V Tj = 25 C
150 C
-0.2 -0.4 -0.6 -0.8 -1 -1.2 -1.4 -1.6 -1.8 -2 -2.2 -2.4 -2.6 Drain Current, ID (A)
1E-07 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 Gate-Source Voltage, VGS (V) 0
Fig.8. Typical transconductance, Tj = 25 C. gfs = f(ID)
Fig.11. Sub-threshold drain current. ID = f(VGS); conditions: Tj = 25 C
Normalised Drain-Source On Resistance
2 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0 RDS(ON) @ Tj RDS(ON) @ 25C VGS = -4.5 V -1.8 V -2.5 V
Capacitances, Ciss, Coss, Crss (pF) 1000
BSH203
100
Ciss
Coss 10 Crss
25
50
75
100
125
150
Junction Temperature, Tj (C)
1 -0.1
-1.0 -10.0 Drain-Source Voltage, VDS (V)
-100.0
Fig.9. Normalised drain-source on-state resistance. RDS(ON)/RDS(ON)25 C = f(Tj)
Fig.12. Typical capacitances, Ciss, Coss, Crss. C = f(VDS); conditions: VGS = 0 V; f = 1 MHz
August 1998
4
Rev 1.000
Philips Semiconductors
Product specification
P-channel enhancement mode MOS transistor
BSH203
-7 -6 -5 -4 -3 -2 -1 0
Gate-Source Voltage, VGS (V) VDD = 10 V RD = 20 Ohms Tj = 25 C
BSH203
5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 2 2.5 3
Source-Drain Diode Current, IF (A)
BSH203
150 C
Tj = 25 C
0
0.5
1
1.5
0
0.5
1
1.5
2
2.5
Gate Charge, Qg (nC)
Drain-Source Voltage, VSDS (V)
Fig.13. Typical turn-on gate-charge characteristics. VGS = f(QG)
Fig.14. Typical reverse diode current. IF = f(VSDS); conditions: VGS = 0 V; parameter Tj
August 1998
5
Rev 1.000
Philips Semiconductors
Product specification
P-channel enhancement mode MOS transistor
MECHANICAL DATA
Plastic surface mounted package; 3 leads SOT23
BSH203
D
B
E
A
X
HE
vMA
3
Q A A1
1
e1 e bp
2
wMB detail X Lp
c
0
1 scale
2 mm
DIMENSIONS (mm are the original dimensions) UNIT mm A 1.1 0.9 A1 max. 0.1 bp 0.48 0.38 c 0.15 0.09 D 3.0 2.8 E 1.4 1.2 e 1.9 e1 0.95 HE 2.5 2.1 Lp 0.45 0.15 Q 0.55 0.45 v 0.2 w 0.1
OUTLINE VERSION SOT23
REFERENCES IEC JEDEC EIAJ
EUROPEAN PROJECTION
ISSUE DATE 97-02-28
Fig.15. SOT23 surface mounting package.
Notes 1. This product is supplied in anti-static packaging. The gate-source input must be protected against static discharge during transport or handling. 2. Refer to SMD Footprint Design and Soldering Guidelines, Data Handbook SC18. 3. Epoxy meets UL94 V0 at 1/8".
August 1998
6
Rev 1.000
Philips Semiconductors
Product specification
P-channel enhancement mode MOS transistor
DEFINITIONS
Data sheet status Objective specification Product specification Limiting values
BSH203
This data sheet contains target or goal specifications for product development. This data sheet contains final product specifications.
Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. (c) Philips Electronics N.V. 1998 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
August 1998
7
Rev 1.000


▲Up To Search▲   

 
Price & Availability of BSH203

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X